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ABSTRACT: Power system stabilizer (PSS) can provide supplementary control signal to the excitation 
system to damp electromechanical oscillations between interconnected synchronous generators and to 
improve dynamic performance. This paper presents a comparison study between a fuzzy type 2 logic 
PSS (FLPSS) and a fuzzy type 2 model reference learning PSS (FMRLPSS) to improve the stability of a 
synchronous generator. A fuzzy type 2 logic based PSS and fuzzy type 2 model reference learning are 
designed and simulated using MATLAB software package. The simulation results are compared. It is 
shown that the FMRLPSS is superior to FLPSS. 
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INTRODUCTION 
 
 Electro-mechanical oscillation between interconnected synchronous generators is phenomena inherent to 
power systems. The damping of these oscillations is of vital concern, and is a prerequisite for secure system 
operation.  Power system stabilizers (PSSs) can provide supplementary control signal to the excitation system to 
damp these oscillations and to improve dynamic performance.  
 Most PSS in use in electric power systems employ the linear control theory approach based on a linear model 
of a fixed configuration of the power system and thus tuned at a certain operating condition. Such fixed parameter 
PSS, called conventional PSS (CPSS), is widely used in power systems, it often does not provide satisfactory 
results over a wide range of operating conditions. 
 In recent years, fuzzy type 2 logic has emerged as a powerful tool and is starting to be used in various power 
system applications . Fuzzy type 2 logic can be an alternative to classical control. It allows one to design a 
controller using linguistic rules without knowing the mathematical model of the plant. This makes fuzzy type 2-logic 
controller very attractive systems with uncertain parameters. The linguistic rule necessary for designing a fuzzy 
type 2-logic controller may be obtained directly from the operator who has enough knowledge of the response of 
the system under various operating conditions. A decision table represents the inference mechanism of the fuzzy 
type 2-logic controller, which is consists of linguistic IF-THEN rule. It is assumed that an exact model of the plant is 
not available and it is difficult to extract the exact parameters of the power plant. Therefore, the design procedure 
cannot be based on an exact model. Therefore, the fuzzy type 2 logic approach makes the design of a controller 
possible without knowing the mathematical (exact) model of the plant. 
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 However, the fuzzy type 2 control methodology which have ever been reported are many problems, since 
structure of fuzzy type 2 rule, membership function and parameters in fuzzy type 2 controllers are determined by 
trial and error depending on computer simulations and skilled person's  intuition. 
 There are two principals’ solutions for this problem to a self-learning and adaptation of the fuzzy type 2 
controller: the first using Neuro-Fuzzy type 2 Control technique (ANFIS), the second using a learning technique 
based on a model reference .In this paper, we introduce a learning controller that is developed by synthesizing 
several basic ideas from fuzzy set and control theory, self-organizing control, and conventional adaptive control. 
The adaptive control system is designed so that its “learning controller” has the ability to improve the performance 
of the closed-loop system by generating command inputs to the plant and utilizing feedback information from the 
plant. In the case, we utilize a Learning mechanism, which observes the terminal voltage and adjusts the 
membership functions of the rules in a direct fuzzy controller so that the overall system behaves like a "reference 
model". The effectiveness of this Fuzzy Model Reference Learning PSS (FMRLPSS) is illustrated by showing that it 
can achieve high performance learning control for power system stabilizer. 
 
Problem Formulation 
System modeling  
 In single machine infinite bus system, the synchronous machine (generator) is connected to an infinite bus 
through a transformer and two parallel transmission lines. In generator bus, a local load is also supplied as seen 
Fig. 1. 

 
Figure 1. Schematic of the single machine power system connected to an infinite bus 

 

Fuzzy type 2 logic power system stabilizer (FLPSS) 
 A FLC is a kind of a state variable controller governed by a family of rule and a fuzzy type 2 inference 
mechanism. The FLC algorithm can be implementation-using heuristic strategies, defined by linguistically describe 
statements. The fuzzy type 2 logic control algorithm reflects the mechanism of control implemented by people, 
without using a mathematical model the controlled object, and without an analytical description of the control 
algorithm. The main FLC processes are fuzzifier, knowledge base, the inference engine and defuzzifier as in Fig. 2. 

 
Figure 2. The basic structure of the fuzzy type 2 controller 

 
 The inference engine maps the input values into fuzzy type 2 value using normalized membership functions 
and input gain. The fuzzy type 2-logic inference engine deduces the proper control action based on the available 
rule base. The fuzzy type 2 control action is translated to the proper crisp value through the defuzzifier using 
normalized membership functions and the output gain. The output control signal from FPSS is injected to the 
summing point of the AVR. In this paper, inputs are fuzzified using normalized triangle membership functions. 
 In Fig. 3 it is shown how to use fuzzy type 2 controller in a PSS structure and its illustrations can be explained 
as the following steps [7]: 
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Figure 3. Schematic structure of FLPSS 

 

Step (1): In this method, two variable   and   are used as input signal in PSS. The coefficient Kin1 and Kin2 in 
input stage, keep the input signals within value scale to required value in decision limit. The output signal (UPSS) is 
injected to the summary point of AVR as the supplementary signal. 

Step (2): Each of FLPSS input and output fuzzy type 2 variable Y= (   , UPSS) membership function have been 
chosen identical because of the normalization achieved on the physical variables. The normalization is important 
because is allows the controller to associate equitable weight to each of the rules and therefore, to calculate 
correctly the stabilizing signal. 
 Each of the input and output fuzzy type 2 variable, yi is assigned seven linguistic fuzzy type 2 subsets varying 
from Negative Big (NB) to Positive Big (PB). Each subset is associated with a triangular membership function to 
form a set of seven normalized and symmetrical triangular membership function for fuzzy type 2 variables. (See 
Fig. 4). 
 

 

Figure 4. Fuzzy type 2 variable ay
 seven membership functions 

 

Step (3): The ymax and ymin represent maximum and minimum variation of the input and output signals. These 
values are selected based on simulations data. The range of each fuzzy type 2 variable is normalized between -4 
to 4 by introducing a scaling factor to represent the actual signal. 

Step (4): The interface mechanism of the FLC is represented by a 77  decision table. The set of decision rules 
relating all possible combinations of input to outputs is based on previous experience in the field. This set is made 
up of 49 rules expressed using the same linguistic variables as those of the inputs and is stored in the form of a 
decision table shown in Table 1. 
 

Table 1. FLPSS decision table 







 

 

NB NM NS Z PS PM PB 

NB NB NB NB NB NM NS Z 

NM NB NB NM NM NS Z PS 
NS NB NM NM NS Z PS PM 
Z NM NM NS Z PS PM PM 

PS NM NS Z PS PM PM PB 
PM NS Z PS PM PM PB PB 
PB Z PS PM PB PB PB PB 

 

Step (5): Let 321 ,...,, 
 represent the centroids of M membership functions that are assigned to UPSS and wi 

represents the firing strength of the ith rule. Thus, for M rules, the output of the controller is: 
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Fuzzy type 2 Model Reference Learning PSS  
 Figure 5 shows the functional block diagram of the FMRLPSS. It is made up of four main parts; the plant, the 
fuzzy type 2 controller to be tuned, the reference model, and the learning mechanism (an adaptation mechanism) 
[8]. The FMRLPSS uses discrete time signals (r(kT), and y(kT) with T as the sampling period. It also uses the 
learning mechanism to observe numerical data from a fuzzy type 2 control system. With this numerical data, it 
characterizes the fuzzy type 2 control system’s current performance and automatically synthesizes or adjusts the 
fuzzy type 2 controller so that some given performance objectives are met. 
 

 
Figure 5. Fuzzy type 2 Model Reference Learning PSS 

 
 Here, the fuzzy type 2 control system loop operates to make y(kT) track r(kT) by manipulating u(kT), while the 
adaptation control loop seeks to make the output of the plant y(kT) track the output of the reference model )(kTym by 
manipulating the fuzzy type 2 controller parameters. 
The fuzzy type 2 controller 
 The synchronous generator (Heffron-Philips Model) which represents the plant has an input u(kT) from the 
fuzzy type 2 controller and frequency deviation in output y(kT). The input to the fuzzy type 2 controller is the error 

)()()( kTykTrkTe   and change in error T

TkTekTe
kTc

)()(
)(




 
Where r(kT) is a reference input. 
 A total of 121 fuzzy type 2 rules were employed as indicated below in table 1 with triangular membership 
functions. 
 

Table 2. FMLRPSS Decision table 

 
 
 In the table above, NV, NL, NB, NM, NS, ZR, PS, PM, PB, Pl, PV stands for negative very large, negative 
large, negative big, negative medium, negative small, zero, positive small, positive medium, positive big, positive 
large, and positive very large. 
 

 
Figure 6. Membership functions for input universe of discourse 
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Figure 7. Membership functions for output u 

 

The reference Model 
 

A reference model             is chosen because this model decays to zero in short time. If T = 0.1 sec, we can use 
bilinear transformation to find the discrete equivalent continuous time transfer function G(s) by replacing s with  
         . A Fuzzy type 2 Model Reference Learning PSS for Synchronous Generator Terminal Voltage Control 
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where )(zym  and R(z) are the transforms of )(kTym  and r(kT ) respectively. So the discrete time implementation is 
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The Learning Mechanism 
 The learning mechanism tunes the rule-base of the direct fuzzy type 2 controller so that the closed loop system 
behaves like the reference model. These rule-base modifications are made by observing data from the controlled 
process, the reference model, and the fuzzy type 2 controller. The learning mechanism consists of two parts: a 
fuzzy type 2 inverse model and a knowledge base modifier. The fuzzy type 2 inverse model (having the same rule 

base with the fuzzy type 2 controller) performs the function of mapping )(kTye (representing the deviation from the 

desired behavior) to changes in the process inputs p(kT) that are necessary to  force )(kTye  to zero. The 
knowledge-base modifier performs the function of modifying the fuzzy type 2 controller’s rule-base to affect the 
needed changes in the process inputs. 
 

 
 
 

 
 
 

(a)                                                                 (b)                                                                  (c) 
Figure 8. Compare performance of FLPSS and FMRLPSS: (a) Normal Load, (b) Heavy Load, (c) Fault in the line 

 
RESULTS 

 
In this section, in order to compare the performance of the FLPSS and FMRLPSS, some simulations are performed 
and its time domain results are provided. Simulations performed in three different operating conditions as follow: 
a) Normal load condition: The condition in which the system is operated in initial values. The values are selected as 
Pe0=1.0 p.u, Qe0=0.015p.u, Vt0=1.05pu. 
b) Heavy load conditions: The condition in which the real power (Pe) is increased from 1.0 to 1.3 p.u. 
3) In the case of fault occurrence in transmission line: The condition in which the line 2 in Fig. 1 is isolated with 
normal condition. 
 

Table 3. The coefficients K1 to K6 for The Heffron-Phillips model in different operational conditions 

Operation Conditions 
1K  2K  3K

 4K  5K
 6K  

Nominal Load 0.5441 1.2067 0.6584 0.6981 -0.095 0.8159 

Heavy Load 0.4563 1.4477 0.6584 0.8706 -0.167 0.7747 
Fault in the Line 0.4007 1.1404 0.7095 0.6834 -0.120 0.8348 
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In order to compare the performance of FLPSS and FMRLPSS, the load change in real power is set at 10% and 
the behavior of frequency deviation in  different operational conditions are shown in Figs. 8(a)-8(c). 
 

CONCULSION 
 

 The application of fuzzy type 2 model reference learning controller is the main focus of this paper. Not only that 
this controller is adaptive in nature but the behavior of the plant is controlled by identifying (11×11) rules which took 
care of most nonlinear operating conditions which wouldn’t have been a problem by convectional adaptive and 
non-adaptive controllers. 
the simulation result show that the FMRLPSS has a better performance over a wide of operating condition than the 
FPSS and is a less sensitive to change in operating condition.(See Figs.8(a)-8(c)). 
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